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Abstract

This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load
distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general me-
chanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact
region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as
the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the
variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite
laminates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bolted joints provide the primary means for transferring load among composite components in the
construction of aircraft and space structures. The stress state in a bolted joint is dependent primarily on the
dimensions of the planar geometry, loading conditions, degree of material anisotropy, bolt-hole clearance,
bolt flexibility, and friction between the laminates. Also, aircraft and space vehicles traveling at supersonic
and hypersonic speeds can experience high temperature excursions. The influence of thermal expansions
can be significant and may differ significantly among the materials for the bolts and laminates. As a result,
high thermal stresses may develop as the temperature increases and may alter the bolt load distribution.
Therefore, accurate determination of the stresses in bolted laminates under both mechanical and thermal
loading is essential for reliable strength evaluation and failure prediction.

A considerable amount of work on the behavior of composite joints with a single bolt exists in the lit-
erature. These studies investigated the stress distribution around a pin-loaded hole in laminated composites

* Corresponding author. Tel.: +1-520-621-6113; fax: +1-520-621-8191.
E-mail address: madenci@email.arizona.edu (E. Madenci).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00128-7



7802 V. Kradinov et al. | International Journal of Solids and Structures 38 (2001) 7801-7837

based on either finite element analysis or analytical methods. Since the contact stress distribution and the
contact region are not known a priori, a majority of the models did not directly impose the boundary
conditions appropriate for modeling the contact and non-contact regions between the bolt and the
boundary of the hole. These models usually assumed a cosinusoidal bearing stress distribution or zero
radial displacements over the contact region of the hole boundary. In the case of multi-bolt joints, the
commonly accepted approach is to first determine the load distribution among the bolts in order to identify
the critical (most highly loaded) bolt for a subsequent single-bolt analysis for local stress distribution.
However, this type of analysis disregards the interaction among the bolts located in close proximity to each
other. A representative study with extensive literature survey and experimental investigation was conducted
by Ramkumar et al. (1986). They developed a special finite element for a “loaded hole” to predict the bolt
load distribution in bolted lap joint and to determine the most critical bolt for a subsequent detailed stress
analysis. The bolt load distribution analysis is essentially one dimensional. Therefore, the bolt load dis-
tribution is always equal among the bolts in a row perpendicular to the direction of loading. In order
to account for this discrepancy, the load distribution among the various rows was predicted by invoking
experimentally obtained ‘“‘joint stiffness’ values. Also, this analysis is limited to particular bolt patterns in
order to conform to the loaded hole element geometry. In order to eliminate these shortcomings, Madenci
et al. (1998) developed a method for single-lap joints based on the boundary collocation technique. Their
method determines the contact stresses and contact region, as well as the bolt load distribution, as part of
the solution procedure. However, this method fails to provide converged solutions consistently depending
on the number of bolts and their location in relation to each other or to the free boundaries. A detailed
validation and demonstration of their approach, as well as an extensive review of previous analyses, were
reported in detail by Madenci et al. (1997).

In the literature, there are essentially no direct analyses of double-lap bolted joints for solid laminates
under general loading conditions and appropriate boundary conditions arising from contact phenome-
non. Madenci et al. (1999) extended their boundary collocation technique for single-lap joints to con-
sider double-lap joints and thermal loading. This method provided converged results for particular
configurations, but also suffered from consistent convergence arising from the explicit partitioning of the
domain.

Xiong and Poon (1994) introduced an analytical approach utilizing a variational formulation in con-
junction with the complex potential theory to single- and double-lap joints with many bolts. Their approach
considers each laminate of the joint separately. The coupling of the laminates is achieved through bolt
displacements, which are permitted only in the direction of loading. In their two-stage analysis, the first
stage provides the local deformation along the hole boundaries of one of the laminates subjected to the
external boundary conditions and the prescribed cosinusoidal bearing stress representing the bolt load at
each hole boundary. The local deformations and the bolt deflections are imposed as displacement con-
straints in the subsequent second stage to determine the contact stresses (bolt loads) and the contact region
in the second laminate. Subsequently, these fastener loads are imposed as prescribed cosinusoidal bearing
stress for the first stage of the analysis, and the iterative process continues between the first and second stage
analyses until the constraint conditions are satisfied.

This study presents an analysis method for determining the bolt load distribution in single- and double-
lap joints while accounting for the contact phenomenon and the interaction among the bolts explicitly
under bearing and by-pass loading with or without thermal loading. Although an extension of the analysis
introduced by Xiong and Poon (1994), it eliminates the requirement of a two-stage analysis and the as-
sociated iterative process. Furthermore, it considers each laminate of the joint simultaneously by cou-
pling them through bolt displacements in both the horizontal and vertical directions. Also, it captures the
effect of the clearance between the bolt and hole. Without resorting to a two-stage analysis, the resulting
equations are solved in a coupled manner, leading to the contact stresses, contact region, and bolt load
distribution.
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2. Problem statement

The geometry of a bolted single- and double-lap joint with composite laminates is described in Fig. 1.
The joint can be subjected to a combination of bearing, by-pass and shear loads, and a uniform tempera-
ture change. Each laminate of the single- and double-lap joints, joined with L number of bolts, is subjected
to traction components 0 (o = x,y) along the I'® segment of the external boundary of each region de-
noted by I'® The section of the external boundary subjected to displacement constraints, u( ) (p =n,s),
is denoted by I'®. The subscripts “n” and “s” denote directions outward normal and tdngent to the
boundary, respectrvely. Each region with an area of 4% can be under uniform temperature change, 7.
The thickness of the laminates (regions) is denoted by #¥). The contact region between the /th bolt and the
hole boundary in the kth region is denoted by I'*”. The sub or superscripts “(k)”” and “(¢)” refer to the
regions (laminates) and bolts, respectively. Their ranges are specified by Ak =1,... ,Kand £ =1,...,L, with
K and L being the total number of regions (laminates) and bolts, respectively. As illustrated in Fig. 2, the
hole radius, a,, which is slightly larger than the bolt radius, R, leads to a clearance of d,. The hole and bolt
radii remain the same for each region. As shown in Fig. 2, the center of each hole, located at (X, Y,),
coincides with the origin of the Cartesian coordinates (x;, ).

As shown in Fig. 3, the free-body diagram of each component of a lap joint, the unknown boundary
traction components, A( ) arise from the deformation of the boundary given by ¢ c (u£ u<" ) along a
portion of the external boundary, I'®_ The unknown traction component in the outward normal direction,

( Y arises from the deformation of the contact zone between the Eth bolt and the hole boundary in the kth

reglon laminate. This contgct zone deformation is expressed by ¢*9 = y® — u(“)(A ) — S along the
contact region denoted by I'*. The extent of the contact reglon denoted by % s dependent on the bolt
displacement, L?W)( ) deformation of the hole boundary, u\", and the gap, (3 1) Because of the absence

of friction between the bolt and the laminate, the tangential component of the bolt displacement, 2, and

the traction vector, A( Y vanish, i.e., 4% = 0 and ) *0 — 0. As shown in Fig. 4, at the point of initial contact
(prior to any deformatlon of hole boundary) the gap between the hole boundary and the bolt (distance PP’)
in the kth region is defined by

PP’ = §(y = 0¢[1 — cos(0 — 07)] (1)

in which 0" specifies the line of action, m, and J, is the clearance. The extent of the contact region, ' s
defined by the angles 0, and 0. The flexible bolts experience deflections given by

20" = {Aﬁ), A)(Q, Ayl),Ai?} for a single-lap joint (2a)
A0 = { Ai?7 A)(fz), Ai?, A;el), A%), A%)} for a double-lap joint (2b)

with 4 i? and 4 ;f) (i = 1,K) representing the bolt deflection components at the ith point along the length of
the /th bolt along the x- and y-directions, respectively.

The material properties of each laminate are represented by the matrix A¥ relating the stress resultants,
N;?, to strain resultants, si’g, with o, f =x, y, in the form

N Ay Ap AW ®
]V}()]’{) = | A Axn A 8}(!;) or N(k) — A(k)s(k) (3)
NY ) e A de] (268

where A () are the components of the in-plane stiffness matrix A of the kth region. The strain components
arising from temperature change, * (“ﬁ), are expressed as

(6,768, 2:6) = (o, o), o)) T @
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Fig. 1. Geometric description of single- and double-lap joints with many bolts.

where the coefficients o), «f), and aff) represent the thermal expansion coefficients of the kth region

with respect to the global (X, Y) coordinate system. The corresponding thermal stress resultants are defined

«A7(k)
as "N,
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Fig. 2. Position of a bolt before and after the load is exerted.
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In matrix form, this relationship is expressed as

N = AR50 (6)
in which *&® = «®T® with a®’ = {oa®, o) o)},
The stiffness matrix of the bolts, b'”), is given by
b 0
) _ X
y

whose coeflicients are determined by modeling the bolt as a beam under concentrated forces. The explicit
expressions for bolt stiffness for a single- and double-lap joint, as well as the general lap configurations, are
derived in Appendix A.

These angles, the contact stresses, the components of bolt displacement, and the forces exerted by the
bolts are the unknowns to be determined as part of the solution. Unless indicated otherwise, the subscripts
o and f vary as o, § = x, y, representing the (x,y) global coordinates. The subscript p varies as p = n, s,
representing the directions normal and tangent to the boundary, as shown in Fig. 1. Also, only repeated
subscripts imply summation.

3. Solution method

The solution method is based on the variational formulation in conjunction with the complex potential
theory. The governing equations are derived by requiring the first variation of the total potential energy,
arising from thermal and mechanical loads, to vanish. The in-plane equilibrium equations in each region
are satisfied exactly by employing complex potential functions in the form suggested by Lekhnitskii (1968).
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Fig. 3. Free-body diagram of each component in a bolted single-lap joint.

However, each of the bolt equilibrium equations and the boundary conditions are satisfied by minimizing
the total potential energy.

3.1. Governing equations

The total potential energy for K regions connected with L number of bolts in the absence of friction
between the laminates and the bolts along the contact region under mechanical and thermal loading can be

expressed as
K L K L . K B K B
n=>Y U+ BOLY S w4y 4y (8)
= [ k=1

1 =1 k=1 1 k=1

The strain energy of the kth laminate, U®, is given by
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Fig. 4. The gap between the bolt and hole boundary immediately before and after the load is exerted.

1 k) (k k)« (k
U<'IC> = 5 / NOE )8§<ﬁ)dz4 — / Ni/}) Si/})dA (9)
A®) Ak)

with its first variation derived in the form

L)

* 4 (k k *4(k k * 1 (k k
tg>5ug>dr+/ z<>6u<ﬂ>dr+[2/ﬂw 1O 8u® dr (10)
=1

o 7

SU® = — / Ny oulb) dda + /
AWk ' I

Jall

in which *#(0) = (Na(;;) - 2*Na(l,§))n,; with o, f = x, y and p = n, s. The strain energy of the ¢th bolt, B, is given
by
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¢ 0.0 40 s
BY =140 4" with i,j =1,2K (11)
with its first variation
) _ 7,(0) 4(0) s 4(0)
3B = b4 54 (12)

The potential of the reaction forces, /":ffz) and )tg‘) (p = n,s), arising from the contact between the bolt and
the hole boundary and the applied displacement constraints along the external boundary are denoted by
W) and W, respectively. They are expressed in the form

ko — / RO — a4 - 87, har (13)
o

in which

ik _ 1 contact between the kth plate and ¢th bolt
"1 0 no contact between the kth plate and ¢th bolt

and
Wk = /ﬂk) /Ti)k){u;“ — ﬁ;k)}df with p =n,s (14)
The potential of the externally applied tractions, 7©), denoted by W® is expressed as
o = — /(k) Wu®dr  with o = x,y (15)
r

in which 7% and u(® represent the applied traction and displacement components in the x- and y-directions,
respectively. Their first variations are obtained as

S0 — / JELu — #0140 ~ &7, boI4 I + / J0 300 5,0 g
k)

n J

f0)
. R aA(ké)
_/ RANS un(e) 84 dr (16)
(kO aA,
and
S0 — / 510 {ul) — b ar + / 0 sul dr (17)
F® r®
and
Sk = / 9 5ul dr (18)
e

The first variation of the total potential energy can be obtained as
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Z / i ) dd + Z { 47 ~ g /r A ijf; dr} 54"
K L
+Z/W){t E }8” dr+k121:/1“<w< VI8 )6u dr
K L X ~ < )
+ Z Z /ﬁm 0 suP dr + Z /W) {*tgc) + )LE}")}BuE}k) dr + ; /N) {uék) _ gg)k)} 8)»5}1‘) dr

JOLul —af(A") + 6, } 8717 AT (19)

Noting that dul®), su®, 8, sa®, 84\, and 81*" are arbitrary independent quantities and requiring the
first variation of the total potential energy to vanish lead to the equilibrium equations for the laminates and
bolts as

k
Niy=0 ona® (20)
pO A0 S jke) 7(k0) oull) dr =0 1.2 21
N L — J L 1 =V, i, f = ) K
i A4 ; /ﬂm n aAI(z) J (21)
Their associated boundary conditions are obtained as
{*ty‘) - fg‘)} =0 onIW (22a)
("9 +J€550) =0 on [ (22b)
“® =0 on [ (22¢)
k) 4 — k)
{0470} =0 on T (22d)
{ul ~a®} =0 on I (22¢)
AL~ lf0(A) + 8} =0 on [0 (221)

where o, f=x, y; p=n,85;k=1,...,K;and £=1,... L

3.2. Total potential energy

The strain energy expression given in Eq. (9) can be rewritten in terms of displacement components as

/(/» ocﬁ zyﬁ 7/ zy[i’ zx/?dA (23)
AK)

Its integration by parts yields

UU‘):—;( Nosp 2No</flf) dA+;/A(k) K af 2N1/ﬁ> ]ﬁdA (24)
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Under uniform temperature distribution and applying Gauss’ theorem, it reduces to

— (k)
___/ NG dA+2/r<k)( 2N Y ar (25)

This expression can be further simplified by invoking the stress resultants, N,z g, that satisfy the equilibrium
equations, N, = 0, given by Eq. (20), as

1
*) — (k)
U > /r(k) ( -2 N )n/j u,’ dI’ (26)

The explicit expressions for the stress resultants and displacement components satisfying both the equi-
librium equations and the compatibility conditions are given by Lekhnitskii (1968).
Finally, the total potential energy expression given in Eq. (19) is reduced to a form, free of area integrals,

as
- 1 90 g BN © 4 - 70 f 0 _ 50
= = 2N, )n = A / A {u —u }dF
2a [ (o)t ar ey Sl o3 [ A0 -
K L R
D> / TG LU — a0 (4)) + éz‘m}dr— 3 / @ dr (27)
=1 =1 JI* = Jrw
witho, f=x,y; p=n,s;k=1,...,K;and £ =1,..., L. It can be rewritten in matrix form as
| * 0\ T g ®) LS p0A0 LN 70
= = N¥ — 2N n“a"dr + = b AY + / A
YN ) 222
Shy (k) 5 (kOT 4 (k0) Y RORNO)
+ / JEORE RO — / 9 uWdr (28)
where
¢W = u® —g®, ek = g® _ ko ( A“)) — 5&/) (29a)
(COLN B0 N (5T W (S L 151 (O N I(5 T QR (S L 1)
ut = quu e =t o at =0 (29b)
R L T U Vil S A PN (29¢)
0T {521()7 E‘gk)}; k0T _ { éﬁlkf)70}; 8L = {5&0,0} (29d)
and the matrix of unit normals, n'¥), is expressed as
n® 0
n® =| 0 n¥ (29¢)
n;k) n®

As given by Eq. (3), the unknown bolt displacements are contained in vector A, and matrix b'” represents
the bolt stiffness.
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The constraint condition given by Eq. (22¢),

EE}") = ug‘) - L?Ef‘) =0 with p=n,s (30)

is rewritten in vector form as

¢ g™ =0 (31)
in which
o = TOu® (32)

with T® representing the transformation matrix between the (x, y) and (n, s) coordinate systems. The
displacement vectors w'” and u® are defined in the (n, s) and (x, y) coordinate systems, respectively,

o = {ul ul} (33)
u®’ = {ufck), uﬁ")} (34)
Substituting for u® from Eq. (B.19) into Eq. (32) yields
u" =T® gk a® (35)
leading to
¢® — TRy® g® _ §® (36)
The unknown traction vector, A%, defined in Eq. (29¢) can be assumed as
J
9 =3 pAY (37)
=0
where the matrix P; and vector of unknown coefficients 115-“ are defined as
P, = [‘O’f 2,] and AP = {4y, 4, (38)
with p; being the jth-order Legendre polynomial. In matrix notation, this equation becomes
0 — pA® (39)
where
P=[P P P, P] and AV ={A], AT, A]...., AT} (40)

From Egs. (36) and (40), the boundary integral of the product A0 &® that appears in the expression for the
total potential energy is obtained as

/ T g — / AOTPTTOU® a® g — / AWTPTTORO 4 = RO EWa® _ AWFO (41
10 R0

F®)

where
ch — / PTTOU® dr (42)
Q)

and
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o = / P'T®Wa® dr (43)
IaG

The constraint condition given by Eq. (22f),
0 = ) _ k) (4 j(_é')) + 8 =0 (44)

is rewritten in vector form as
¢ =" — @™ (A 4+ 84y =0 (43)

The bolt displacement vector, ", at the contact region can be expressed in terms of the bolt deflections in
the form

i = G (46)

in which the matrix G*” and the vector A" are defined as

[71(21 —zi) n(z2 —z) e n(zx — zx)
. sinf, cosOy 0 0 e 0
Gk — 47
0 0 0 0 . 0 (47)
n(zy —zi) n(zo—z) coo nzx —zi)
with #5(z; — z;) defined as
1 ifi=k .
n(zi—z) = {0 i P £k i=1,...,K)
and
T y y
N LA AL e A DAY A ()
With substitutions from Eqs. (35) and (46), the expression for ¢*9 becomes
ek — T® gk _ GROA® 4 8, (49)
The unknown traction vector, A*?, defined in Eq. (29¢) can be assumed as
1
A0 = A (50)
where the matrix F; and vector of unknown coefficients /A\,W) are defined as
_|E 0 AKOT _ A0 }
fi= [0 E] and A = {4770 Gh

in which F; is an orthogonal trigonometric function satisfying the condition of zero stress at the endpoints,
1e.,

F(s=s0) =F(s=s)=0 (52)

These functions are formulated as

in(0(s) — 0(s0))

E“>:Sm{(wm>—0@w>

] with i = 1,7 (53)
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in which 6(sp) and 60(s;) represent the beginning and end angles of the contact region. These angles are
measured with respect to the global X-axis, and any point in the contact region is identified by the angle

0(s).
The expression for the unknown traction vector at the contact region can be rewritten as
AFD = FAR) (54)
where
F=[F F F, - F] and A®" — {Ag“),l&ﬁ’f”, . ..,[\ﬁ’f@} (55)

From Eqgs. (49) and (54), the boundary integral of the product 2076 that appears in the expression for
the total potential energy is obtained as

/ 30T @0 g — / ACOTETpOY® 0 g / ACOTETGRIAGO g 1 / AW ETs dr
ko) ko) ko) (k0 0
(56)
or
/ﬂm )»(“ e qf = AR CKO k) _ Ak 0T g(k/)A( ) +A(k/!)Tgéké) (57)
where
/ dr (58)
Jallol
/ FGH d (59)
(kt)
/ F's;, dr (60)
Also, the potential energy of the traction vector, %), acting on I'® is expressed as
[ uar— [ e [ ot -t o
%l ) RG
where
f= [ UWt®Wdr (62)

R0}

Substituting from Egs. (B.19), (41), (57) and (61) for the appropriate terms in Eq. (28), the expression for
the total potential energy is obtained in matrix form as

K K L K K
— % Z a® HWa® _ Z “h®) g k) +% Z AO BOA® 4 Z AR Chgk) _ Z ABTFH
k=1 k=1
K L . . K L R (ke K L R T K
£3DTACCHH -3 SATEIA £ 3 SO A g Y Tl (63)
k=1 (=1 k=1 (=1 k=1 (=1 k=1

in which
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He — / SEpOU®T 4 (64)
r®

B — / NO US4 (65)
)

where S® and U® are given by Egs. (B.19) and (B.20). The total potential energy in Eq. (63) is compacted
to its final form

n=1a"Ha — "ha + IATbA + A"Ca — A"f + ACa — A"g,A + A"g, —fa (66)

in which the vectors and matrices are defined by

al = {a(1>T, a®’ a(K)T} (67a)
AT = {A“)T, AT A(”T} (67b)
AT { AU ROT AW} (67c)
AT = {A<”T,A<2)T7 . .,A<K>T} with A®" = {A“"”T,A“‘”T, .. ,[\("'”T} (67d)
o {f<1>T,f<2>T, . ,f<K>T} (67¢)
b= {0 e e (67f)
. {f(1>T,f(2)T’ - j(K)T} (67g)
R N T R T R T . " T “ T . T N T
g = {gé” e } with g = {gék” 807 } (67h)
and
HD
H®
H-— (68a)
H®
b
p?

b= . (68b)
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c
i ¢
= C
C (68¢)
&)
o ]
- é<2) . ()T ~ T A T ~ T
C= with €W’ = {Caﬂ) crT L @) } (68d)
)
and
g
T T T ggkz)
~ N N N . ~(k
ol =g & - @] with g = . (68¢)

The minimization of the total potential energy, i.e., dn = 0, leads to the following equilibrium equations

H 0 C" C"(a f+"h

0 b 0 g'()A 0

0 A 0 69
C 0 0 0f)A f (69)
Cg 0 oflA £

Solving Eq. (69) for the unknown vectors permits the calculation of the stress and displacement compo-
nents in each laminate, bolt deflections, and forces exerted by the bolts. Because the angles 6, and 03
defining the contact region are unknown, these equations are solved for their assumed values until con-
vergence is achieved through an iterative scheme. The iterative scheme for solving the system of algebraic
equations given in Eq. (69) begins with the initial estimates of 0 AO and 930 , shown in Fig 5, defining the
contact region. These angles are measured in the counterclockwise direction from the x¥) axis of the local
coordinate system, (x (€ >, ) The initial estimate in most cases does not represent the true contact region,
for which the radial stresses are all compressive ¢t < O on I'™ and the fact that the start and the end
points of the contact region have zero radial stresses, ¢\¥(0,) = 0 and ¢® (03) = 0.

As shown in Fig. 5, three distinct cases exist, dependlng on whether the radial stress near the start angle,
6; , 18 larger or smaller than the true value of the start angle or equal to the true value, 0, of the contact
region, ') The initial guess of the starting angle, 0% ., 1s smaller than its true value, 0,4, if the compresswe
radial stresses change sign and become tensile near the start point of the contact region, 0 . The initial
guess of the starting angle, HA , is larger than its true value, 6, if the compressive radial stresses do not
change sign and remain compressive near the start point of the contact region. The initial estimate of the
end angle, 63 , is larger than its true value, 0, if the compressive stresses change sign and become tensile
near the end angle. If the compressive stresses do not change sign, then the initial guess, 0, is smaller than
its true value.

During the iteration process, an initially guessed contact region defined by 0;0) and 920) converges to the
true contact region defined by 0, and 03 through incrementally changing the values of the start and end
angles. The increment is forced to decrease each time the true value of the start or end point is passed, and
the direction of angle change is altered. The convergence of the iterative process is achieved when the
incremental value of the angle reaches a pre-defined value.



V. Kradinov et al. | International Journal of Solids and Structures 38 (2001) 7801-7837

7816
bt:
m Angle, 0 %ﬁ
(0]
i &
=
3
&
-2
© ;
O Angle, 0 S;
t 177)
&
75}
=
IS
a2
0© b
A Angle, 0 o
L 7]
&
w2
=
;e
-~

Fig. 5. The behavior of radial stress near the start point of a contact region.

In order to avoid the case of radial stresses having zero values at the start or end points of the contact
region but with tensile and compressive stresses along the contact region, two auxiliary points are con-
sidered as shown in Fig. 6. These points are located inside the contact region near the start and end points
of the contact region. In order to achieve convergence for the contact region, the radial stresses at these two

auxiliary points must be compressive.

4. Numerical results

Three different types of load transfer through bolted joints are considered in order to validate the present
analysis. The first configuration is a pin-loaded square plate considered by Ireman et al. (1993). The second
configuration is a single-lap joint with four bolts investigated by Xiong and Poon (1994). The third con-
figuration is a joint of dissimilar bars with a single bolt under different uniform temperature changes ana-
lyzed previously by Gatewood (1957). Then, the capability of the present analysis is demonstrated by
considering two different double-lap joint configurations: one with three bolts under mechanical loading
only, uniform temperature change only, and their combination, and the other with seven bolts under

mechanical loading only.
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A pin-loaded square plate was investigated through detailed finite element analysis by Ireman et al.
(1993). As shown in Fig. 7, the geometry of the plate is defined by the parameters W = 24 mm, D = 6 mm,
0 = 0.021 mm, and thickness # = 3.046 mm. Three different sets of laminate material properties considered
in the analysis are given in Table 1. The bolt was assumed to be rigid and the applied load, P, was taken as
5483 N. In the present analysis, the number of terms, N, retained in the series representation of the complex

potential functions, @ (z%9) and @*)(z*)), is taken as 80. The number of terms retained in the series

representation of the reaction tractions, A*) and A*9. denoted by J and I, respectively, is taken as 24. Figs.
8-10 shows the favorable comparison of the normalized radial and tangential stresses obtained through the
finite element analysis reported by Ireman et al. (1993) with those of the present calculations. The slight

Table 1

Material properties of laminates
Case E, (GPa) E, (GPa) G,, (GPa) Vi
A 99.2 35.5 8.5 0.24
B 35.5 99.2 8.5 0.08

C 515 51.5 19.3 0.33
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oscillations appear due to the trigonometric series representation of unknown tractions along the contact
region. The radial and tangential stress components are normalized with respect to the applied bearing
stress, —P/(d¢), and the applied stress, P/(Wz), respectively.

The geometry and loading conditions of a single-lap joint of aluminum and composite plates with four
bolts are shown in Fig. 11. As shown in this figure, the geometry of the joint is defined by the dimensions of
KD =0.31in., h? =0.117in., D = 0.3125in., W = 3.125in., s = 1.251in., e = 0.9375 in., £ = 2.75 in. There
exists no bolt-hole clearance, 6 = 0. The composite lay-up is [(45°/0°/ —45°/0°),/0°/90°]g with lamina
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properties of £y = 18.5 x 10° psi, Er = 1.9 x 10° psi, Gyt = 0.85 x 10° psi, and vir = 0.3. In obtaining the
present predictions, the series representations of the functions are truncated at N =30 and J =1 =5.
Although the entire geometry of the lap joint is considered in the present analysis, only the predictions for
the bolt loads exerted by Bolt 1 and Bolt 3 are presented due to the presence of symmetry. As compared in
Table 2, the present analysis predictions are in remarkable agreement with those calculated by Xiong and
Poon (1994).
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The geometry of the steel and aluminum plates connected with a single bolt is shown in Fig. 12. Each
plate is subjected to a different uniform temperature change. The bolt is assumed to be rigid, with no
clearance between the bolt and the bolt holes. The material properties and the temperature change for each
bar is presented in Table 3. In the present analysis, the bars are assumed as narrow plates whose geometry is
specified by W = 0.5in., e =3.5in., s = 0.5in., D = 0.2 in., and A")) = 2 = 0.06 in. The present analysis
predictions are obtained by considering N = 30 and J = I = 5 in the series representations of the functions.
The present analysis predicts the force exerted by the bolt to be 442 1b. The bolt force obtained by
Gatewood (1957) according to the strength of materials approach is 461 1b. The difference of 4.1% in bolt
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Table 2
Bolt load distribution
Present analysis Xiong and Poon (1994)
P /P 0.23 0.23
P;/P 0.27 0.27

load prediction is possibly due to the fact that the strength of materials approach does not account for the
presence of the bolt hole.

The geometry of a double-lap joint with three bolts is shown in Fig. 13. The geometry of the plates all
having the same dimensions are described by W = 50 mm, s = 25 mm, e = 12.5mm, D = 6 mm, # = 5 mm,
A" = h® =4 mm, and § = 0.005 mm. The material properties for the steel and aluminum plates, re-
spectively, are: Eg = 200 GPa, vs = 0.3, ag = 11.7 x 107° (°F)7l, En =70 GPa, vo = 0.3, and oy = 23.0 x
10-6 (°F)~". All of the bolts in this joint are assumed to be rigid. For the first case of mechanical loading
only, the applied tensile stress, ¢*, is 200 N/mm. In the second loading case, the plates are under uniform
temperature change only. Accordingly, the steel plates are free from temperature change, A7s = 0°C, while
the aluminum plate is subject to AT, = 125°C. The third case represents a combination of the mechanical
and thermal loads, with ¢* = 200 N/mm, ATy = 0°C, and AT, = 125°C. The number of terms retained in
the series representation of the functions in the present analysis is specified by N =30 and J =1 = 5.

Due to the presence of symmetry, only the results concerning Bolt 2 and Bolt 3 are presented in Figs. 14—
16 and Table 4. The tangential and radial stresses around the bolt holes, shown in Figs. 14-16, correspond
to mechanical loading, uniform temperature change, and their combination, respectively. As observed in
these figures, the location and extent of the contact region, as well as the magnitudes of the bearing stresses,
change significantly. The bolt load distributions for each of these loading cases are given in Table 4. As
expected, the force exerted by Bolt 2 alters its direction when the nature of the loading changes from
mechanical to thermal. This behavior is caused by the thermal expansion of the aluminum plate constrained
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Table 3
Material properties and temperature changes
Material E (psi) v « ((°F)™ AT (°F)
Plate 1 Steel 3 x 107 0.3 6.5x 107° 500
Plate 2 Aluminum 107 0.3 12 x 107° 100

with three bolts. Consequently, under thermal loading, the bolt forces with their directions toward the
middle of the plate resist the thermal expansion of the plate.

Under combined mechanical and thermal loading, the forces exerted by Bolt 2 and Bolt 3 are ap-
proximately equal to the sum of the forces acting on these bolts in the cases of mechanical and thermal
loads. This shows the effect of the non-linearity arising from the contact analysis.

A complex double-lap joint with seven bolts, shown in Fig. 17, is subjected to a tensile loading. The outer
plates are steel and the inner plate is a composite. The bolt-hole clearance is specified as 1% of the hole
diameter. The composite plate is made of graphite and fiberglass with material properties £y = 4.7 x 10°
psi, Er = 4.75 x 10° psi, Grp = 1.2 x 10° psi, and vt = 0.24. Steel properties for the plates and bolts are
taken as £ = 30 x 10° psi and v = 0.3. The applied load is 70,000 Ibs, corresponding to ¢* = 10,000 psi.

In the calculation of the results, the number of terms retained in the series representation of the functions
in the present analysis is specified by N = 30 and J = I = 7. Because of the presence of symmetry, only the
stress distributions around Bolts 1, 2, 4, and 5 are shown in Fig. 18. The forces exerted by these bolts are
given in Table 5. As expected, the bolts in the first row share more of the load than the bolts in the second
row. Also, the outer bolts share more of the load than the inner bolts. Accordingly, Bolt 1 and Bolt 3 are the
most highly loaded bolts for this configuration.
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5. Conclusions

In this study, a new approach based on a complex potential theory in conjunction with a varia-
tional formulation has been introduced for the thermo-elastic contact analysis of a general bolted-joint
configuration containing multiple laminates joined by multiple bolts. The total potential energy of the joint
is formulated by using a solution in the form of a complex potential series that automatically satisfies
the stress equilibrium equations and compatibility conditions, thus avoiding the necessity to perform
area integrations and resulting in boundary integral expressions for the strain energy of the laminates.
The total potential energy also includes the strain energy of the bolts based on a shear deformable beam
theory.

In order to capture high gradient variations of stresses near the free or bolted holes, the stress field is
defined as the superposition of complex potential series originating from each hole. Hence, not only are
continuous stress and displacement fields obtained but the modeling of the entire joint is also simplified
considerably. By only entering boundary information, hole size and locations, and the number of terms to
be used in complex and other series, the solution provides all the stress, displacement, and contact force
distributions at any point in the joint.

Contact between the bolts and the laminates is established by enforcing displacement continuity along
the contact region between the bolts and the plates. This is established by incorporating the work done by
the unknown contact forces over the contact displacements into the total potential energy expression. The
contact displacements are defined by constraint equations that take into account the gap between the bolts
and plates. The contact forces are assumed in the form of trigonometric series that satisfy stress-free
conditions at the ends of the contact regions.

Since the contact regions are unknown a priori, an iterative scheme is adopted in order to determine the
beginning and end angles of the contact regions. Starting with an initial guess, the system matrix is gene-
rated to solve for unknown plate and bolt displacements and contact forces simultaneously. The simul-
taneous determination of bolt displacements and contact forces, along with the plate displacements, is
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a unique feature of the present formulation. A new guess is then obtained by monitoring the stress
distribution along the contact regions. The iterative scheme is continued until a configuration for contact
regions is reached where all the contact forces become compressive.

The validation problems show excellent agreement of the present formulation against those reported by
other investigators. The pin-loaded panel in the first validation problem provides a comparison of contact
angles and contact force distribution. For all laminate configurations, remarkable agreement is obtained
between the present analysis and the refined finite element solution. In the case of a single-lap configuration
subjected to thermal loading, the strength of material solution is available. As expected, the present analysis
achieves the right bolt load and compares well with the strength of material solution if full contact is as-
sumed around the bolt. In the case of a single- and a double-lap joint containing multiple holes, the present
analysis captures the correct load distribution shared by each bolt.

The versatility of the present formulation has been demonstrated by solving a double-lap joint confi-
guration containing three bolts and two laminates with different material properties, and the joint is sub-
jected to thermal, mechanical, and thermo-mechanical loadings. All of these cases are solved assuming
variable contact regions. Therefore, the rule of superposition is invalid for these problems since the contact
regions are changing. This can be clearly observed in the tabulated results where the summation of the bolt
load distribution arising from thermal and mechanical loads is significantly different from those arising
from the combined loading.
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Appendix A

The bolt stiffness matrix is derived based on the Timoshenko’s zeroth-order shear deformable beam
theory. The cross-section of a bolt connecting K laminates (regions) is shown in Fig. 19. The bolt number is
denoted by ¢ and the regions are numbered from bottom to top in sequential order. The bolt has a circular
uniform cross-section, 4,, moment of inertia, /,, and Young’s and shear moduli, E, and G,, respectively.
The nuts at the ends of the bolt are assumed to represent clamped boundary conditions, thus preventing
rotations but creating reaction moments at the ends of the bolt.

The bolt is subjected to forces arising from the contact between the bolt and the laminates. Because of
the variation in laminate thickness and stiffness, these forces exerted by the laminates vary through the
length of the bolt. Because of the variable contact forces along the length of the bolt, the large in-plane bolt
stiffness compared to those of the laminates and the small ratio of the bolt diameter to its length, the most
suitable and accurate representation of the bolt can be achieved by discretizing the bolt into small Timo-
shenko beam elements connected at nodal points, as shown in Fig. 19.

The bolt discretization is based on the most effective locations of the contact forces. Thus, two of the
nodes are selected at the top and bottom ends of the bolt in order to obtain the largest in-plane bolt de-
flection. The contact forces exerted on the bolt by the top and bottom laminates are assigned to these end
nodal points. The remaining nodal points are chosen at the intersections of mid-planes of the inner lam-
inates and the bolt longitudinal axis, as shown in Fig. 19. Hence, the contact forces exerted on the bolt by
the inner laminates are assigned to these intermediate nodal points. The nodal deflections and rotations



7826

3500 —
3000 —
2500 —
2000 —
1500 —

1000 —

V. Kradinov et al. | International Journal of Solids and Structures 38 (2001) 7801-7837

Tangential
stresses G,,

-1000 —
-1500 —
-2000 —

-2500 —

Stresses around bolt holes (N/mm)

-3000 —

-3500 J

-4000 —|

——— Hole #2
—-—-- - Hole # 3

-4500 T T

60

T
% 120

[ I
150 180

I
210

I [
240 270

I |

[
300 330 360

Angle, 0 (degree)

Fig. 16. Stresses around bolt holes in aluminum plate due to combined thermal-mechanical loading.

Table 4
Bolt load distribution in a double-lap joint of steel plates and

an aluminum plate with three bolts

Bolt load (N)

Mechanical loading

Thermal loading Combined loading

Bolt # 2 F, —2313.99
F, —54.74

Bolt # 3 F, ~5374.18
F, 0

6906.94 4383.20
6597.65 6372.89
—13815.46 —18769.19
0 0

along the length of the bolt permit the determination of the bolt deflection at any point along the bolt by

utilizing interpolation functions.
Because the bolt material is homogeneous and
inertia of the bolt is homogeneous on the (x,y)

isotropic and its cross-section is circular, the moment of
plane. Hence, there exists no coupling between the de-

formations of the bolt on the (x,z) and (y,z) planes, leading to the uncoupled stiffness matrices of the bolt
associated with the (x,z) and (y,z) planes. However, their forms are identical since the stiffness properties of
the bolt are homogeneous on the (x,y) plane. Therefore, the derivation of the stiffness matrix associated
with the (x,z) plane applies to the stiffness matrix associated with the (y,z) plane.
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Fig. 17. Steel plates bolted to a composite laminate with seven bolts.

As shown in Fig. 19, the bolt connecting K laminates is modeled by (K — 1) number of beam elements
and K nodes. Each node is assigned a deflection, A_i? = A)(f) (z;), and a rotation, 4)3;) = (;’)ff) (z;), with the
subscript i = 1, K representing the node numbers. The positive directions of the deflections and rotations
are shown in Fig. 19. Also, the length of each beam element is denoted by L;, with i = 1, K. Based on the
geometry and material properties of the /th bolt, the strain energy arising from the bolt deformation as-
sociated with the (x,z) plane can be written as

K-l
U,f“ _ Z Uéi@ (A.1)

=1
The strain energy of each element is expressed as
» 1 . 1 .
00 =5 [ Bt 5 [ Gt () a2)
L; L;

in which the strains k) and 7\ are based on Timoshenko’s zeroth-order shear deformation theory, and
they are defined as

) dZA(i() y )
(it) _ x (i) — (it)
Kzz - dZ2 and yzx 7? ¢x (A3)
In Eq. (A.2), A7, denotes the corrected area of the bolt and is defined as

Afg = CzAg (A4)

d4
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Table 5
Bolt load distribution in a double-lap joint of steel plates and a composite laminate with seven bolts
Bolt Er (lb) Fjv (lb) F;'/F;ipplied
1 —1181.5 11983.7 0.1712
2 0 11340.9 0.1620
4 2.5 9947.8 0.1421
5 238.3 7427.6 0.1061

in which ¢? represents the shear correction factor, which is a correction to the shear strain energy due to
uniform transverse shear deformations.

The displacement and rotation field of the bolt is represented by piecewise continuous interpolation
functions. These functions are defined individually over each element as

v (0 ® day) A4y,
A}((z,)(z) =H, (S)Axi + HZ(S)Ax(i+l) +H3(s) d; + H4(S) T (ASa)
() = Ni(s) by + Nals) i) + N(s) (A.55)
where the subscript m denotes the mid-point of the element. The variable s = z — z; is a local coordinate
system for the ith element. The interpolation functions H;(s) (j = 1,...,4) represent the cubic Hermitian

polynomials defined as
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Also, the functions N;(s) (j =1,...,3) represent the Lagrangian shape functions defined as
Ni(s) = (5 = Li/2)(s — L)/ [12/2] (ATa)
Na(s) = s(s — L;)/[L} /2] (A.7Db)
Ns(s) = s(L; — s)/[L} /4] (A.7c)

In order to express 4/ and ¢! in terms of the nodal unknowns defined at the end points of the element,
two successive steps are performed. In the first step, constraint of uniform shearing strain along the beam
element is enforced into the kinematic field, thus leading to
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Substituting from Egs. (A.3) and (A.5) into Eq. (A.8) and grouping the terms as coefficients of z° and z, this
constraint equation produces two algebraic equations of the form

4da® 2 da¥

=0 (A.8)

6 6 3 0 1 4
Sl _ O O] ()
L dz 'L dz  IZ A+ A g P g Py T P (A%
6 da¥ 6 da' 12 4 12 8
E dz LZ dZ+ = L3 A‘Cl + Ax i+1) L2 ¢Xl L2 ¢ (i+1) F ¢)<m)t (A9b)
These two equations are then solved for d4' /dz and dA( 1y/dz as

day 1w, 1w S e ® 0

& = L Tt o~ ¢x(l,+1) 3 ¢m (A.10a)
iy Lo Lo Lo, S0 2,0 A.10b
T _1: xi +1: x(i+1) _gd)xi +6¢x(i+l) _§¢.xm (A )

Substituting from Egs. (A.10a) and (A.10b) into Eq. (A.5a) and rearranging the terms, the in-plane
deflection component, A)(fé), is obtained as

. Ss 35?2 2s3 s s 253
A0 — (12540 SA SRR M D) BN N PAC)
x ( L) + L )+ 6 2L, + 32 i + 6 2L, + 32 Priivn

2s 257 457
+<‘€+L‘§ﬁ@2 (A0

Thus, the total number of unknowns in the expressions for the deflection and rotation is reduced from 7 to
5. Substituting from Egs. (A.11) and (A.5) for Ai"‘*) and qbff/’) in the strain definitions, Eq. (A.3), and carrying
out the integrations in Eq. (A.2), analytically result in the following strain energy expression for the ith
element of the ¢th bolt in matrix form

T .
‘ 1 (i) (i€) (il)
“=s { q)& } [béile)T )t qXI (A12)
2 %) b12 bzz qxz

where
@t _ [ g0 40 O 40
QG =40 Ay by P (A.13a)
(i) _ 1(0)
9o = d)xm (Al3b)
Gy Gy Gedpe Gedgy
L; L; 6 6
_ Gy Gudye _ Gedye Gudyo
(i) _ L; L; 6 6
b11 - Gy _ Gdyy 7E414 + GMNL Egly 4 Gedpeli GeAyLi (A‘13C)
L; L; 3L; 36
Gydyy _ Gedyy E[/g + G(A/[L: 7E[15 + GedyiLi
L; L; 3L; 36 36

i 2 2 8E, GiApL; 8Ed, GuAsL;
bif) { e Ll 2Z+[fe}

Ay —=GA
3 0 =3 Gedse = 3L, 9 3L, 9

: (A.13d)
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A further reduction of the total number of unknowns from 5 to 4 is achieved in the next step. The slope
defined at the mid-point of the beam, d)xm, can be condensed out of the strain energy expression, Eq. (A.12),
by employing the static condensation procedure. In the absence of nodal forces at the mid-point of the
element, the first variation of the strain energy with respect to qff) yields the equilibrium equation at the
mid-point as

b%) — (A13C)

i)t (it it) (it
bl q\) +6%q5;' =0 (A.14)

Solving for qx2 (i.e., qb ) in the above equation and substituting into Eq. (A.12), the strain energy ex-
pression reduces to

Ul = 1q ) plit fq1 (A.15)

in which ¢\ is identical to qff ), and b is defined as

AU il it it
e
b = bﬁ% bf'zb b?) o) (A.16)
B
by by b34 by,
or
120 126 6L eblL
pio _ | —126 120 —6bL, —6b"L
6b'L;,  —6p\L,  apy?  —2p{"
LebL, —ebL,  —2b{ 4l
where
y AnEGoly
(;z) _ seoGely . (A.17a)
Li(12E.d, + A7G(L?)
o Edy(3Ed, + ArGoL:
b — o (3Edd; + A7/ GL7) (A.17b)
Li(12Ed; + A GL?)
@ Edi(6Ed; — ApGoL})
3 = (A17C)
Li(12Ed, + A7 G(L?)
Substituting from Eq. (15) into Eq. (A.1), the strain energy of the /th bolt is expressed as
(0 — .
U z A.18
0=3 gl A1

As mentioned previously, the presence of nuts prevents the bolt from rotating at the end points; thus, it
resembles clamped-type boundary conditions, requiring that qbff]) =0 and qﬁiQ = 0. Invoking this condition
into Eq. (A.18), the strain energy expression is modified as

wa ;qr (10" b' 14 Z qxz[ q)(cié) + %q;((K—l)g)Tb/((K—l)i)q;((K—1)[) (A.19)
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where the vectors and matrices with a prime are defined as

" = {40,496} (A.20a)
T
g = {A)(cfk—l)’ A%()a ¢,(ff)/<71)} (A.20b)

(1) (1) ¢ 5 (10)
by, by §b14

(10) ,
b= | B0 0 B0 (A.20c)
i
44
and
BUKDO - plE=D0) (=10
(K—1)0) - 1\ 11/ - 1\p
b = | p{E-DO plK=DO pi&-10 (A.20d)
b(1(3K—1)é‘) b(z(aK—l)(’) bg(}K—l)é’)

The terms on the right-hand side of Eq. (A.19) can be rearranged such that all the unknown deflection and
rotation components and the coefficients of the element stiffness matrices are assembled in large vectors and
matrices. Hence, the strain energy expression is compacted to

T 4 {4
U =37 40 O 0 | ol (A.21)
qx¢ bAQb b¢¢ qx¢
where
T T
W = {4949 A o = {806 80} (A22)

[ p0) 410 T
bll b12

(1) | 10 | 120 | 520
bl2 b22 +bl] b12

b = (A22b)
b(l(ZK*Z)@ b(2(2K72>Z)+bi<lK71)f) b(l(ZK*l)é)
_ e A |
by '
A
L C T Ao

(K-2)0) | p(K-2)0) | p((K-1)0)
b23 b24 +bl3

(K-1)0)
L b23 .
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[ (10) (20) (20)
by +0by ¢ by,

(20) (26) (3¢) (39
b3y by’ + b3y’ | by

by, = (A.22d)

bg(‘lefs)é) b ((K=3)¢) +b bg(4K72)€)

(K-2)0) (K-2)0) | p((K-1)0)
b34 b44 + b33 J

The bolt is subjected to contact forces that are assigned to the nodal points and the reaction moments due
to clamped support at the end points of the bolt.

None of the internal nodal points, where the nodal rotations are active, is subjected to external moments.
Therefore, it is appropriate to reduce the total number of unknowns by statically condensing out the ro-
tational components of the bolt. Because no external moments are acting on the internal nodal points, the
first variation of the strain energy with respect to the vector q(f;)) must vanish, thereby yielding the moment
equilibrium equations in matrix form as

b L al + bl =0 (A.23)
Solving qw in the above equation and substitution into Eq. (A.21), after rearranging the terms, lead to
ljx 0 _ %A)(cl) b)(c Axf) (A.24)

where the vector Al”) is identical to q(é‘) and the matrix bl is defined as

1 T -1
H _ Ko O HO KO
b, = bj; — b by buy (A.25)
As mentioned previously, the stiffness properties of the bolt in the (x,z) and (y,z) planes are identical
because the bolt material is isotropic and its cross-section is circular.

Thus, the strain energy of the bolt in the (y,z) plane can be expressed as

U = IAOTBOAY (A.26)
in which the vector Ai‘) contains
)T ¢
Ai/) = {A;I) Aiz) AiK)} (A.27)
and the matrix b)@ is identical to bfp, i.€.,
¢ LRERORRERG
=) (A2
The total strain energy of the bolt becomes
U =1 A§‘>Tb§”) A0 41 A},"be*) Al (A.29)
or, in a more compact form,
T
1[A® b 0 AD AT
Ut = 2 { Axf) 6 b Axw = %Am bAY (A.30)
y y y

The analytical derivation of Eq. (A.30) depends on the number of plates connected with the ¢th bolt. For
example, the analytic derivation of matrix bffé) (= by)) for bolts used in single- and double-lap joints is
obtained as
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b = b = [ _b;* —b{j } (A.31)
with

T LGy + 2EIL

for a single-lap joint, and

r (162 (1), (16)_, ,(20) (1), (26) b
b(llla - —(124 0 b(ll%o — s o) <(1b 3 tb 2 ) ——%M) bz%
20 3 0) (2 0,20
/74‘1 -%—b22 /’44 -i—/)22 /)44 +b22
(10) | (2012 (1) | 5.(20)1,.(20)
0 (0 (16) (20 _ (b3 +bi5) (16) | (b3, +byy )by
bl = b = B 4+ p\30 — e P Lo p (0 e PP (A.33)
x 0 33 11 5050 13 0 +60
(20?2
20) b
Sym~ b( —

with bl(-jw) and b,(.jm defined by Eq. (A.16) for a double-lap joint. If a bolt connects more than three laminates,
the analytic derivation would be too lengthy to present herein. For this case, numerical calculation of the
matrices becomes more appropriate.

Appendix B

For the kth region (laminate), the displacement components, (") and (), can be rewritten in terms of
real vector quantities as

2 N
K 0 — *k0)" 1 1kOTY , (k0)
(”x Uy ) =>. > (Ux<rn>va<rn> a (B.1)

(v ) = S5 57 (st st s o 2
where L% is the number of bolt holes in the kth laminate and the real vectors are given by

Uil({f,); = {2Re[p"";, ], - 2Im[p, ] ]} (B.3a)

U = {2Re[g4a},], - 2Im[g, ;] } (B.3b)

SU0) = 2Re[12 g, ], — 21m[12 g, ]} (B4a)

Sty = {2Re[ = ¥, ], — 2Im[ - g} ]} (B.4b)

S, = {(2Re[u, “g},], — 2Im[u, )]} (B4c)

" = {Re[ ] = T[] (5
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The functions ®*“* and @** are defined as

, n i d X
kl)* (k) __ (k0) k)% __ kl)*
¢)(n) (ir ) - (ér ) and qDSn) - dzgk() {qj)(n) } (B6)
based on the explicit form of the complex potential functions given by Lekhnitskii (1968)
N n
O (1) = 3 (%) ot (B.7)
=3

in which (%! are the complex unknown coefficients and &%) map the /th circular hole in the kth laminate to
a unit circle in the mapped plane, thus permitting Laurent series representations to approximate the field
variables. The prime denotes differentiation with respect to é,@. The mapping functions fﬁk/) introduced by
Bowie (1956) are in the form

Zk0 + (z(m)2 —a,(1 —13)
a7 ENE ) el (B35)
: a1~ i) '

in which ay, is the radius of the ¢th hole in the kth region and i = (—1)1/ *. The sign of the square-root term is
chosen so that éﬁk@] > 1. The complex parameters z¥and z* are defined as

29 =X+, Y and 2 =xO 4y O

”

in which X and Y are the global coordinates and x and y\) are the coordinates associated with the bolt
hole. The complex parameters p,, and u,, are the roots of the characteristic equation derived by Lekhnitskii
(1968).

Terms arising from the expansion of U%i) Si’;%m, and a* for r ranging from 1 to 2 can be contained in
the following vectors:

&0 _ f®0" wo”
Ua(n) - {Uat(ln)’Ua(Zn)} (Bg)
k)T _ [0 Q0T
Sctﬁ(n) - {Sat/}(ln)’saﬁ(Zn)} (BIO)
T T
alk0’ = {agi@ ,alt? } (B.11)

The terms arising from the expansion of these vectors for n ranging from —N to N are contained in the
vectors defined as

T _ [y k0T k0T (k)" k0T (k)T

Ul = Ul Ul U U U (B.12)
k)" [ QU0T (k)" k)" Q) (k)"

Soc/f - {Sa/i(—N)7 Soz/f(—N+l)’ T Soz[i(—l)’ Soz[f(l)’ T Su[i(N) (B~13)
[ k0T (k)T k0" (k) (ke)"

al 7{a(fN),a(fNH),...,a(fw,a(l) s Ay (B.14)

with (o, f = x, ). Thus, using Eqgs. (B.12) and (B.13), the series expansions for displacements and resultant
stresses in Egs. (B.1) and (B.2), respectively, can be rewritten as
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(k)

ul = 3" Uk g (B.15)
(=1
LK) .

Ny =>"sl) ak (B.16)
(=1

with (« = x,y). These expressions can be recast as

L)

u® = ZUW)T alk0 (B.17)
=1
yAUl

sk — Z QKO 4k (B.18)
(=1

by defining the following vectors

" _ (k) A7) pAr(k)
N - {vi 71vyy ’ny }

Uk — [UW) UW)}

x ¥y

Skt — [SW) Sk gk

Xx W Xy }

Finally, these equations can be expressed in a more compact form as

u® = y»" q® (B.19)
NK — gh" 40k (B.20)
where
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